LESSON 6.3b

Inverses of Logarithms

Today you will:

• Use inverse properties of logarithmic and exponential functions

Graph logarithmic functions

Practice using English to describe math processes and equations

Core Vocabulary:

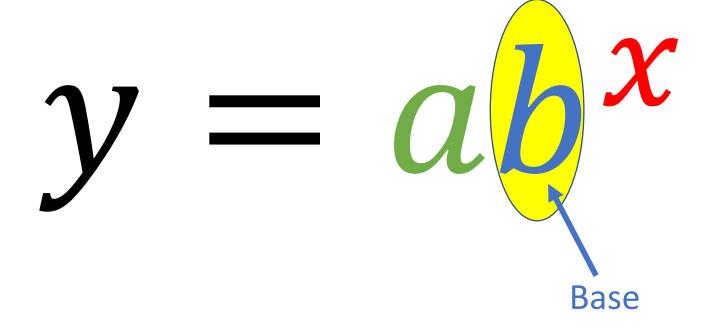
• Logarithm base b of y, p. 310

Previous:

Inverse functions

First, a few items of important review we will need for today...

Where is the "base" in an Exponential Function?



Where is the base in a Logarithm?

$$\log_b y = x$$

What does it mean that one function is the inverse of another?

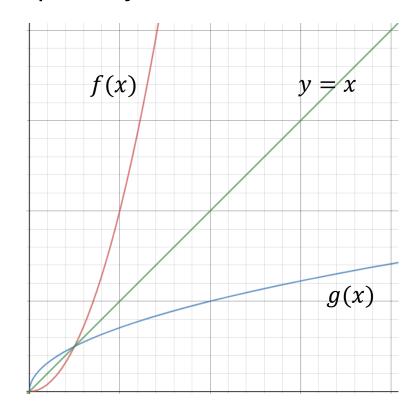
- They are "opposites"
- They "undo" each other
- Their graphs are reflections around the line y = x
- If you plug one into the other and simplify, you end up with just x

Example:

$$f(x) = 4x^2$$
 and $g(x) = \frac{1}{2}\sqrt{x}$

$$f(g(x)) = 4\left(\frac{1}{2}\sqrt{x}\right)^2 = 4\left(\frac{1}{4}x\right) = x$$

$$g(f(x)) = \frac{1}{2}\sqrt{4x^2} = \frac{1}{2}(2x) = x$$



Given
$$f(x) = \log_b x$$
 and $g(x) = b^x$...find $f(g(x))$ and $g(f(x))$

This shows that $y = log_b x$ and y = b.

what g(x) is

$$f(g(x)) = \log_b g(x)$$

Write
$$f(x)$$
 plugging in $g(x)$

$$y = \log_b b^x$$

Rewrite as
$$y =$$
and fill in what $g(x)$ is

$$b^{y} = b^{x}$$

Rewrite in exponential form:
$$x = \log_b y \rightarrow y = b^x$$

$$y = x$$

The statement can only be true if y = x

$$g(f(x)) = b^{f(x)}$$

Write
$$g(x)$$
 plugging in $f(x)$

$$y = b^{\log_b x}$$

Rewrite as
$$y =$$
and fill in what $f(x)$ is

$$\log_b y = \log_b x$$

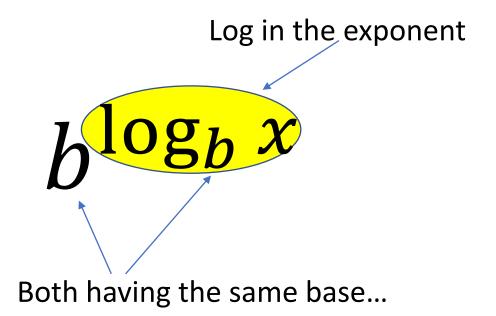
Rewrite in logarithmic form:
$$y = b^x \rightarrow x = \log_b y$$

$$y = x$$

The statement can only be true if y = x

What does this mean?

If you see something in exponent form like this:



Example:

 $(3)^{\log_3 18} = 18$

The answer is x

Why? Because this is g(f(x)) from the prior slide.

Or if you see something in logarithmic form like this:

log b^{x} Both having the same base...

Example:

$$\log_{5}(5)^{3} = 3$$

The answer is x

Why? Because this is f(g(x)) from the prior slide.

Simplify (a) $10^{\log 4}$ and (b) $\log_5 25^x$.

SOLUTION

a.
$$10^{\log 4} = 4$$

$$b^{\log_b x} = x$$

b.
$$\log_5 25^x = \log_5 (5^2)^x$$

Express 25 as a power with base 5.

$$= \log_5 5^{2x}$$

Power of a Power Property

$$=2x$$

 $\log_b b^{\mathsf{x}} = \mathsf{x}$

How do you find the inverse of a logarithmic or exponential function?

Follow the normal process:

- 1. Rewrite as y =
- 2. Swap x and y
- 3. Solve for y
 - If in exponent form, convert to logarithmic form
 - If in log form, convert to exponential form

Find the inverse of each function.

a.
$$f(x) = 6^x$$

b.
$$y = \ln(x + 3)$$

SOLUTION

a. From the definition of logarithm, the inverse of $f(x) = 6^x$ is $g(x) = \log_6 x$.

b.

$$y = \ln(x + 3)$$

Write original function.

$$x = \ln(y + 3)$$

Switch *x* and *y*.

$$e^{x} = y + 3$$

Write in exponential form.

$$e^{x} - 3 = y$$

Subtract 3 from each side.

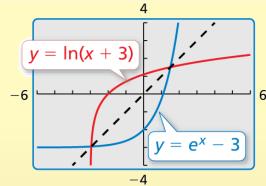
The inverse of $y = \ln(x + 3)$ is $y = e^x - 3$.

Check

a.
$$f(g(x)) = 6^{\log_6 x} = x$$

 $g(f(x)) = \log_6 6^x = x$

b.



The graphs appear to be reflections of each other in the line y = x.

Homework

Pg 315, #35-54